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Statistical Tests for Admixture Mapping with Case-Control and Cases-Only
Data
Giovanni Montana and Jonathan K. Pritchard
Department of Human Genetics, University of Chicago, Chicago

Admixture mapping is a promising new tool for discovering genes that contribute to complex traits. This mapping
approach uses samples from recently admixed populations to detect susceptibility loci at which the risk alleles have
different frequencies in the original contributing populations. Although the idea for admixture mapping has been
around for more than a decade, the genomic tools are only now becoming available to make this a feasible and
attractive option for complex-trait mapping. In this article, we describe new statistical methods for analyzing
multipoint data from admixture-mapping studies to detect “ancestry association.” The new test statistics do not
assume a particular disease model; instead, they are based simply on the extent to which the sample’s ancestry
proportions at a locus deviate from the genome average. Our power calculations show that, for loci at which the
underlying risk-allele frequencies are substantially different in the ancestral populations, the power of admixture
mapping can be comparable to that of association mapping but with a far smaller number of markers. We also
show that, although “ancestry informative markers” (AIMs) are superior to random single-nucleotide polymor-
phisms (SNPs), random SNPs can perform quite well when AIMs are not available. Hence, researchers who study
admixed populations in which AIMs are not available can perform admixture mapping with the use of modestly
higher densities of random markers. Software to perform the gene-mapping calculations, “MALDsoft,” is freely
available on the Pritchard Lab Web site.

Introduction

In most human populations, linkage disequilibrium (LD)
decays rapidly with distance. As a result, genomewide
association scans for complex-disease loci will need to
type very large numbers of markers—probably 1 marker
every few kb or so (Kruglyak 1999; Gabriel et al. 2002).
However, there are some human populations in which
weak LD extends over very large genetic distances be-
cause of recent population admixture. For example, in
African Americans—who have ∼20% European ances-
try, on average—significant LD has been observed over
distances as large as 20 cM (Parra et al. 1998). As long
ago as 1988, it was first proposed that this long-range
“admixture LD” could enable efficient gene mapping
with far fewer markers than would be required for con-
ventional association mapping in an equilibrium pop-
ulation (Chakraborty and Weiss 1988; Stephens et al.
1994). To date, the applications of admixture mapping
have been quite limited (Shriver et al. 2003), but the
genomic tools have just now matured to the point at
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which admixture mapping is poised to make important
contributions to the study of complex traits.

Admixture LD arises when two or more populations
with divergent allele frequencies mix together. In sub-
sequent generations, each individual has some propor-
tion of his or her ancestry that is derived from each of
the original contributing populations. Falush et al.
(2003a) distinguished three types of LD that arise in
such populations and that extend over different scales:
(1) “mixture LD,” which occurs even between unlinked
markers because of variation among individuals in an-
cestry proportions; (2) “admixture LD,” which occurs
between markers on the same chromosome if they are
frequently inherited together from a single ancestral
chromosome in one of the original populations; and (3)
“background LD,” which occurs over very short dis-
tances within populations. Although conventional as-
sociation mapping makes use of background LD and
aims to detect association between the phenotype and
particular alleles, admixture mapping uses admixture
LD to detect genomic regions with excess correlation
between ancestry and phenotype.

The central premise of admixture mapping is that,
since many diseases vary in frequency across popula-
tions, it is reasonable to hypothesize that the underlying
genetic risk variants are also at substantially different
frequencies in different populations (Halder and Shriver
2003). However, it should be noted that environmental
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Figure 1 Schematic figure showing the mosaic structure of chro-
mosomes in an admixed population. The shaded and unshaded boxes
indicate chromosomal segments derived from different ancestral pop-
ulations. If a susceptibility allele is at a higher frequency in the shaded
population, then affected individuals will have increased ancestry from
the shaded population at the locus of that gene (vertical line). Our
method aims to detect this type of signal.

and social factors correlated with race or ethnicity may
also be important in disease etiology. Hence, the mere
observation that disease risk correlates with ancestry
does not immediately guarantee that there are under-
lying differences in risk-allele frequencies (Risch et al.
2002). Nonetheless, for numerous diseases, it seems
highly plausible that the frequencies of risk alleles vary
across the ancestral populations (Halder and Shriver
2003).

When risk-allele frequencies do vary across popula-
tions, then recently admixed individuals with a partic-
ular disease are likely to have high overall ancestry in
the population in which the disease is common, relative
to controls (Knowler et al. 1988). More important, near
disease loci, affected individuals will have a yet-higher
probability of having inherited their chromosomes from
the population in which the risk alleles are more fre-
quent. Admixture mapping aims to detect this latter
signal, while controlling for the possibility of overall
differences in ancestry between cases and controls.

To date, two main types of statistical tests have been
proposed for admixture mapping. One class of test uses
family data, such as data from parent/affected-offspring
trios, and applies the transmission/disequilibrium test
(TDT) framework. These tests screen for loci or chro-
mosomal regions where there is overtransmission of
chromosomes that derive from one population or an-
other (as opposed to overtransmission of particular al-

leles, as in the standard TDT) (McKeigue 1997; Zheng
and Elston 1999; Lee and Yen 2003). The other class
of test, which makes use of unrelated affected individ-
uals, was developed by Paul McKeigue and colleagues
(McKeigue 1998; McKeigue et al. 2000). They describe
their approach as testing “for association conditional
on parental admixture” (McKeigue et al. 1998, p. 241).
Their approach aims to find loci where the ancestry of
affected individuals is skewed toward one of the an-
cestral populations, relative to what one would expect,
given the estimated ancestry of the parents. Recently,
Hoggart et al. (2004) and Patterson et al. (2004) have
extended these approaches, using hidden Markov mod-
els (HMMs) to make full use of multipoint SNP data
for detection of a signal (c.f., McKeigue 1998).

In this study, we describe a pair of new test statistics
for admixture mapping. Like the recent methods of
Hoggart et al. (2004) and Patterson et al. (2004), our
approach uses HMMs to estimate the unobserved an-
cestry of chromosomes and is thus specifically designed
to take advantage of the multipoint information that
will be present in genomewide scans. Our approach is
relatively nonparametric, in the sense that the test scans
the genome for locations where there is an overall skew
of ancestry proportions, rather than assuming a specific
relationship among the penetrances at the disease locus.
We also provide a simple simulation-based method for
assessing genomewide significance.

Apart from statistical testing, another key outstand-
ing issue in admixture mapping is how to choose the
markers (Shriver et al. 1997; Smith et al. 2001; Collins-
Schramm et al. 2002; Rosenberg et al. 2003) and what
marker density is needed to capture most of the infor-
mation about ancestry (McKeigue 1998; McKeigue et
al. 2000; Patterson et al. 2004; Smith et al. 2004). To
date, most of the discussion has centered on identifying
so-called “ancestry informative markers” (AIMs). AIMs
are markers that are unusually informative for distin-
guishing between the populations that have contributed
to an admixed sample (Pfaff et al. 2001; Smith et al.
2004). Clearly, such markers will allow successful ad-
mixture mapping with fewer genotypes than would be
needed if random markers were used. However, for
some current genotyping technologies (e.g., chip-based
genotyping), it may be easier to use standard predeter-
mined marker sets than to create genotyping assays for
new sets. Moreover, AIMs must be identified separately
for every new combination of contributing populations.
Our results indicate that admixture mapping with ran-
domly selected markers is a feasible alternative to map-
ping with AIMs.

Software used to perform the calculations described
in this article is available on the Pritchard Lab Web site.
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Figure 2 Conditional independence structure of the data along a single chromosome. The chromosome is composed of a series of segments,
each derived from one of the contributing populations. The zs indicate the population of origin of each marker along the chromosome; the
sequence of zs forms a Markov chain with jump rate r. The genotype data (the Xs) are generated by drawing an allele at random from the
appropriate population frequencies, given the zs. The genetic map distance between markers 1 and 2 is denoted d1. The model for diploid
unphased data is analogous.

Statement of the Problem

Consider the following problem. An investigator wishes
to perform admixture mapping in a population that was
formed by relatively recent mixing of distinct ancestral
groups. The goal is to identify genetic variation that
contributes to risk for a particular disease phenotype.
The investigator collects (1) a sample of affected indi-
viduals from the admixed population, (2) a sample of
unaffected or random control individuals, also from the
admixed population, and (3) “learning samples” that
consist of random individuals from each of the ancestral
populations (or a close approximation thereof) and that
are used to estimate the ancestral allele frequencies. As
discussed below, it is preferable but not required to have
both controls and learning samples. All of the sampled
individuals are genotyped at a set of ∼1,000–20,000
marker loci spanning the genome. The primary objective
of this study is to describe how to make efficient use of
such data to identify chromosomal regions that contain
disease susceptibility genes.

Models and Notation

Our approach is based on previous models for studying
admixed populations developed by Pritchard et al.
(2000a) and Falush et al. (2003a) and implemented in
the linkage model of the program structure. We start by
assuming that there are K distinct populations that con-
tribute ancestry to the study sample. Individuals may
have ancestors in more than one population, and we
define the “ancestry” of each individual as the propor-

tion of that individual’s genome that is inherited from
each of the K populations. The ancestry of individual i
is specified by a vector, , where(i) (i) (i) (i)q p {q , q , … , q }1 2 K

is the proportion of ancestry of individual i from(i)qk

population k and where . We will use Q to(i)� q p 1kk

denote the multidimensional vector containing all the
values of q(i).

The genome of an admixed individual can be visu-
alized as being composed of a series of chromosomal
segments or “chunks,” each of which descends as an
intact unit, without recombination, from one of the an-
cestral populations (fig. 1). For individual i, each chro-
mosomal chunk comes from population k indepen-
dently with probability . The breakpoints from one(i)qk

chunk to the next are assumed to occur as a Poisson
process, with a rate of r per Morgan. Hence, the average
size of chromosomal chunks is 100/r cM. Notice that
r can be interpreted roughly as the average time since
admixture (Falush et al. 2003a; Patterson et al. 2004).

The data consist of a series of markers along each
chromosome; these are used to infer the hidden pattern
of chromosomal chunks. The notation denotes the(i,a)zl

population of origin (1, …, K) of the ath copy of marker
l in individual i. (Here, a distinguishes the two copies of
a marker in a diploid individual.) Z refers to the multi-
dimensional vector that contains all the values of z.

Each population is characterized by a list of the allele
frequencies at each of the genotyped markers. P denotes
the multidimensional vector that contains the allele fre-
quencies at each marker in each population. The allele
frequencies will be unknown in advance, but there will
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Figure 3 Reconstruction of locus-specific ancestry for a single individual, using AIMs. The top plot shows the “true” simulated ancestry
of a single individual (i.e., whether the individual has 0, 1, or 2 chromosomes inherited from population 1, as a function of position along a
chromosome). The lower plots show the posterior mean estimates for this individual on the basis of marker data at different densities, as well
as with and without known haplotype phase. These data were simulated under the assumption of an admixture time of 10 generations before
the present.

usually be samples of nonadmixed representatives from
the original populations to assist in their estimation.

As described by Falush et al. (2003a), we use Markov
chain–Monte Carlo to sample from the posterior dis-
tribution of P, Q, Z, and r, given the genotype data X.
The algorithm has been implemented for phased, un-
phased, and partially phased data and can handle miss-
ing data and X-chromosome data. The posterior mean
estimates of P, Q, and r will be denoted by , , andˆP̂ Q
, respectively.r̂

Finally, it will be useful for us to define some posterior
average quantities. We use and to denote the es-— —q qd c

timated average ancestry proportions of affected indi-
viduals and of controls, respectively. For example, if
there are md cases, then

md1— (i)q p E(q d X) . (1)�d m ip1d

Notice that is a vector with K elements (as are the—qd

following quantities). Next, let denote the posterior—(i)zl

average ancestry of individual i at locus l, evaluated at
, , and (see appendix A):ˆˆ ˆP Q r

21—(i) (i) ˆˆ ˆz p Pr (z p k d X, P, Q, r) . (2)�l l,a2 ap1

The posterior averages of z at locus l among cases and
controls will be denoted by and , respectively. For— —z zl,d l,c

example,

m 2d1— (i) ˆˆ ˆz p Pr (z p k d X, P, Q, r) . (3)��l,d l,a2m ip1 ap1d

We will refer to as the “locus-specific ancestry” of—(i)zl

an individual (at locus l), and and will be referred— —z zl,d l,c

to as “average locus-specific ancestries” (at locus l).
Notice that, in these models, the labeling of the K
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Figure 4 Reconstruction of locus-specific ancestry for a single individual, using random SNPs with average between the twoF p 0.1ST

ancestral populations. See the legend to figure 3 and the “Simulation Details” section for more information.

populations is typically arbitrary. When there are pre-
defined learning samples, those can be used to attach
numbers to the population samples, but, when there are
not, the Monte Carlo algorithm assigns a set of labels
at random. The average quantities defined above are
intended to be computed with respect to particular la-
beling. See the article by Pritchard et al. (2000a) and
the “Discussion” section for further comments.

Simulation Details

The results presented in this study are based on simu-
lated data generated either under the linkage model de-
scribed by Falush et al. (2003a) or under a Wright-Fisher
model described below. We assumed biallelic markers,
two ancestral populations ( ), and r p 10. TheK p 2
ancestry proportion was modeled independently for(i)q1

each admixed individual, i, as a normally distributed
random variable with parameters (0.2, 0.05); values of

outside (0, 1) were rejected. Half the learning samples(i)q1

had ancestry proportions of (0, 1), and half had pro-
portions of (1, 0). The values of r and the distribution

of q were chosen to approximate the characteristics of
the African American population (e.g., Parra et al. 1998;
Falush et al. 2003a; Patterson et al. 2004).

For the linkage model simulations, the pattern of an-
cestry along each chromosome was then simulated in
accordance with the linkage model (Falush et al. 2003a),
conditional on . For each chromosome in the sample,(i)q
the ancestral state at the first marker was 0 with(i,a)z1

probability , and, otherwise, the ancestral state was(i)q0

1. The ancestral states at subsequent markers were sim-
ulated by

(i) ′ (i)Pr (z p k Fz p k, r, Q)l�1 l

(i) ′exp (�d r) � [1 � exp (�d r)]q if k p k′l l kp (4)(i){[1 � exp (�d r)]q otherwise ,′l k

where dl denotes the genetic distance from locus l to
locus .l � 1

The population allele frequencies of markers were
simulated under two models. The first model was used
to generate AIMs with a prespecified absolute value of
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Figure 5 Accuracy of locus-specific ancestry estimation as a function of marker density. The X-axis shows the number of SNPs per cM,
and the Y-axis shows the MSE in the estimation of . The three lines correspond to an average FST between the ancestral populations of 0.1—(i)zl

(top line) and 0.2 (middle line) and to AIMs with (bottom line). The data were treated as unphased. The values at zero density showd p 0.5
the MSE when q(i) is known, but there is no additional information about Z at the locus of interest. These data were simulated under the
assumption of an admixture time of 10 generations before the present, with mean (see the “Simulation Details” section for specifics).(i)q p 0.2

d, the difference between the allele frequencies in the
two ancestral populations. For the results presented, d

was set to 0.5 (Shriver et al. 1997). For each marker,
the allele frequency of one allele in the first population
was drawn from a uniform distribution in either the
range [d, 1] or the range [0, 1�d], with probability 0.5;
the frequency of the same allele in the second population
was set so as to guarantee the distance d. The second
model was used to simulate random markers by a simple
model of population divergence (Nicholson et al. 2002;
Falush et al. 2003a). At each locus, l, the allele fre-
quency, PA, of a hypothetical ancestral population is
drawn from a uniform distribution in [0.1, 0.9]; then,
conditional on PA, the allele frequency for each popu-
lation, k, was generated from a beta distribution with
parameters , where f is related to the com-[fP , f(1 � P )]A A

mon measure of population divergence, FST, as f p
.(1 � F )/FST ST

The results presented here take either ,F p 0.1ST

which is roughly typical of the divergence between hu-
man populations on different continents, or ,F p 0.2ST

which is representative of the most divergent human
populations. For instance, in a large SNP data set, the
average three-way FST between African Americans,
Asians, and Europeans was 0.12 (Akey et al. 2002).
Under our model, at , ∼1.4% of random SNPsF p 0.1ST

would qualify as AIMs (i.e., ), and 8% wouldd � 0.5
qualify at . For comparison, Rosenberg et al.F p 0.2ST

(2003) reported that 1.9%, 4.6%, and 2.7% of SNPs
qualified as AIMs in comparisons of African Americans
and European Americans, African Americans and East
Asians, and European Americans and East Asians, re-
spectively (data from Akey et al. 2002). Divergence be-
tween Native Americans and Europeans (relevant for
mapping with Hispanic samples) seems to be higher
than that between Europeans and Africans (Rosenberg
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Figure 6 Plots of average ancestry in a sample, as a function of chromosomal location. The gray lines plot the true values, and the black
lines plot the estimated averages for cases (top), controls (middle), and the difference in the averages (bottom). The vertical dashed lines indicate
the location of a simulated disease gene. Parameters: 800 cases, 800 controls, 200 learning samples, and 500 AIMs at a spacing of 2 cM.

et al. 2002 [supplemental information]; Risch et al.
2002), but SNP data comparing those populations are
currently sparse.

Some data sets were generated to evaluate the effects
of misspecifying the allele frequencies. In those simu-
lations, the learning samples were simulated with one
set of allele frequencies, generated as described above.
Then, the allele frequencies for the admixed individuals
were obtained by resampling the allele frequencies from
a normal variate centered at the original frequencies and
with an SD of 0.05. Once Z and P were specified, the
marker data were simulated as binomial draws from the
appropriate allele-frequency distributions.

To simulate data under the alternative model, an ad-
ditional disease locus was included in the simulation at
a fixed position but was removed from the data prior

to analysis. For illustrative purposes, we assumed rel-
atively large effects: the high-risk allele was at frequen-
cies of 0.01 and 0.60 in the two populations, respec-
tively, and the three genotype penetrances were 0.050,
0.175, and 0.700. Below, we present a more general
framework for describing the power of our methods.

Finally, we used Wright-Fisher simulations to simu-
late a genomewide scan of data with random, unascer-
tained SNPs. The allele frequencies in the two parental
populations were simulated as described above, with

and no subsequent mutation. A new, thirdF p 0.1ST

population was then established with 30,000 individ-
uals whose genotypes were simulated in accordance
with the allele frequencies in population 1. Next, we
simulated five generations of migration from population
2 into the new population, at a rate of 5% per gener-
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Figure 7 Plots of the test-statistic values, as a function of chromosomal location. The gray line plots T1 (cases only), and the black line
plots T2 (cases vs. controls). The vertical dashed line indicates the location of a disease gene. As is typical, the signal in this example is larger
when the cases-only test is used. The genotype data are the same as those used in figure 6.

ation. Then, after another five generations of random
mating with no gene flow, 500 cases and 500 controls
were sampled from the admixed population. Further-
more, 200 individuals were simulated in accordance
with the parental population allele frequencies to serve
as learning samples. We simulated data for 23 chro-
mosomes, each with 750 SNPs, at a spacing of 0.2 cM
between each SNP. We assumed four disease loci, each
with frequencies of the high-risk alleles of 0.05 and 0.60
in populations 1 and 2, respectively. The disease loci
were simulated along with the other loci and then were
deleted from the final data set prior to analysis. The
disease loci were considered to be selectively neutral.
Potential case individuals were simulated in the final
generation and then were accepted with probability

, where n is the number of low-risk alleles carried�n5
by that individual. Controls were sampled at random
from the admixed population.

Measuring Variation in Ancestry across the Genome

As described above, in the “Models and Notation” sec-
tion, the chromosomes of an admixed individual can be

visualized as a mosaic of pieces from each of the K con-
tributing populations (figs. 1 and 2). To perform ad-
mixture mapping, we need to use the marker data to
reconstruct this mosaic structure of the chromosomes.

Figures 3 and 4 show examples of reconstruction of
the locus-specific ancestry of a single individual with the
use of AIMs and random markers, respectively (Falush
et al. 2003a, 2003b; Patterson et al. 2004). The results
illustrate several features of this approach: (1) with rel-
atively dense markers, the data are essentially fully in-
formative about ancestry for both phased and unphased
data; (2) as expected, for low marker densities, the qual-
ity of the inference is lower for unphased data than for
phased data, and it is lower for random markers than
for AIMs; and (3) uncertainty in P, Q, and r is relatively
minor and contributes very little to the uncertainty in
Z (results not shown).

To further explore the impact of marker density on
the quality of the inference, figure 5 plots the mean
square error (MSE) of the locus-specific ancestry esti-
mates under a range of scenarios. Notice that, with
AIMs ( ), relatively accurate estimates of locus-d p 0.5
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Figure 8 Simulated distributions of the test statistics under the null and alternative hypotheses for the cases-only (black line) and case-
control (gray line) strategies. The dotted lines show the theoretical normal density. Parameters: 100 AIMs at a spacing of 2 cM, 350 cases, and
350 controls. See the “Simulation Details” section for further details on the simulations.

specific ancestry can be obtained by using ∼1 SNP/cM;
similar accuracy can be achieved by using ∼3 random
SNPs/cM when the FST between the ancestral popula-
tions is 0.2 and by using ∼5 random SNPs/cM when

. The results plotted in this figure assume thatF p 0.1ST

admixture occurred 10 generations ago. If, instead, the
admixture had occurred (on average) t generations ago,
then the marker densities plotted on the X-axis would
need to be multiplied by a factor of t/10. In summary,
for a population such as African Americans, in which
the average time of admixture is ∼7–10 generations and

, ∼3,000 AIMs—or 15,000 random SNPs—F ≈ 0.1ST

should permit accurate estimation of locus-specific an-
cestries across the human genome.

Having calculated the locus-specific ancestries for
each individual in a sample, we can then plot the average
ancestries in the sample as a function of genomic po-
sition (fig. 6). Notice that, across most of the region,
the average ancestry in cases and controls fluctuates
randomly around the average genomewide ancestry.
Near the position of a disease mutation (fig. 6, vertical
dashed line), the ancestry of cases spikes toward the
population in which the risk variant is more common
(fig. 6, top panel). Controls show no spike at that po-

sition (fig. 6, middle panel), and so if we compute the
average ancestry of cases minus the average ancestry of
controls at each position, this also shows an upward
spike at the position of the disease mutation (fig. 6,
bottom panel). In this example, the marker density was
relatively low (1 AIM/2 cM), so there is moderate error
in estimating the random variation in average ancestries.
Nonetheless, the method clearly detects the outlier
locus.

Test Statistics

Figure 6 suggests that there are two types of signal in
the data that would indicate the presence of disease var-
iants. The first is that, near a disease locus, the local
mean ancestry of cases should diverge from the ge-
nomewide mean ancestry of cases. To measure this sig-
nal, we define the following test statistic (T1), that uses
only cases to test for ancestry association at locus l:

——z (k) � q (k)l,d dT (l, k) p , (5)1 — ˆˆ ˆSD[z (k) d P, Q, r]l,d

where SD(x) indicates the SD of a random variable, x,
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Figure 9 Distribution over replicate simulations of the most extreme value of the test statistic T1 in a 400-cM region with no disease
loci. This type of simulated distribution can be used to quantify empirical genomewide significance for the most extreme signals observed in a
data set.

under the null hypothesis. The numerator of equation
(5) computes the difference between the proportion of
ancestry from population k at locus l and the overall
genomewide proportion of ancestry from population k.

The second type of signal is that, near a disease locus,
the local mean ancestry of cases should also diverge from
the local mean ancestry of controls. This signal is cap-
tured by the case-control test statistic (T2):

— —— —[z (k) � z (k)] � [q (k) � q (k)]l,d l,c d cT (l, k) p . (6)2 — — ˆˆ ˆSD[z (k) � z (k) d P, Q, r]l,d l,c

The term measures the local difference in— —z (k) � z (k)l,d l,c

ancestry between cases and controls. Overall, the nu-
merator tests whether that is different from the genome-
average difference in ancestry between cases and controls

. Hence, this test corrects for the possibility that— —(q � q )d c

cases and controls might have different ancestry pro-
portions on average (often referred to as “population
stratification”). Indeed, it is to be expected that —q �d

, if the underlying risk variants are at different—q ( 0c

frequencies in the different ancestral populations.
When there are just two populations, it does not mat-

ter whether these test statistics are computed with respect
to one population or the other; only the sign of the test

statistic will change. If there are more than two ancestral
populations, then the test statistics can be computed sep-
arately with respect to each ancestral population. For
both of these test statistics, we treat P and r as if they
are known without error. In simulations (not shown),
we have found that the error in P and r tends to be small
and that the vast majority of the uncertainty in is due—zl

to the limited information in the marker data. Test 2 is
similar in concept to the “case-control” test proposed
in the recent study by Patterson et al. (2004).

Both test statistics are constructed in such a way that
we can expect them to be asymptotically distributed as
standard normals under the null hypothesis (and this is
confirmed by the simulations described below). Al-
though we may often have a prior hypothesis that disease
loci will produce excess ancestry in the population in
which the disease is common, it seems foolhardy to as-
sume for a multifactorial disease that all disease loci will
produce excesses in that direction. That is, we will be
interested in departures of both above and below the—zl,d

expectation; hence, we treat these tests as two-sided.
The next issue is how to compute the SD terms in the

denominators of equations (5) and (6). If the marker
data were perfectly informative about ancestry, then,
since we assume that Q is known, it would be straight-
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Figure 10 Mapping results for a simulated genome scan of 500 cases and 500 controls, with four true disease loci. The upper and lower
plots show results for the cases-only and case-control tests, respectively. The four large upward peaks on each plot correspond to the four
simulated disease loci; for most of the remainder of the genome, the test statistics lie within the dotted lines at �1.96, corresponding to the
central 95% of the null distribution.

forward to compute the variance of and . (These— —z zl,d l,c

variances would be , where n is the(i) (i) 2� q (1 � q )/(2n )i

number of cases [in T1] or cases plus controls [in T2].)
However, the marker data normally leave some ambi-
guity about ancestry, and this makes the true variances
smaller than would be obtained with perfect informa-
tion. Hence, plugging in the variance computed under
the assumption of perfect information would be con-
servative. (Notice that an analogous problem arises in
nonparametric linkage mapping [Kruglyak et al. 1996;
Kong and Cox 1997].)

Instead, our solution is to estimate the appropriate
SDs by a parametric bootstrapping approach. Specifi-
cally, we resimulate marker data with the estimated val-
ues , , and under the null hypothesis. As for theˆˆ ˆP Q r
real data, each simulated data set is run through a single

iteration of the forward-backward algorithm, described
in appendix A, to obtain the posterior mean of

ˆˆ ˆZ d Data, P, Q, r .

Each iteration of the forward-backward algorithm is
quite fast, so it is computationally convenient to perform
many replicate simulations. From these, we obtain em-
pirical estimates of and that are— — —SD(z ) SD(z � z )l,d l,d l,c

then plugged into equations (5) and (6). The estimated
SDs vary across markers in accordance with how much
information there is at different positions across the ge-
nome, and they are bounded between 0 (no information
about ancestry) and the SD for the full-information case.
We point out that, as an alternative to the normal ap-
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Table 1

Comparison of the Power of Admixture Mapping with the Power of
Association and Linkage Analyses

ALLELES

WITH

ADMIXTURE MAPPING

ASSOCIATION AND

LINKAGE

p1 p2 q1

Sample Size
Required for

p

Sample Size
Required for

Test 1 Test 2 Association Linkage

g p 4.0
.05 .60 .8 65 251 .05 512 1,070
.05 .30 .8 236 924 .10 298 552
.05 .60 .2 152 644 .30 179 479
.05 .30 .2 387 1,593 .60 237 1,414

g p 2.0
.05 .60 .8 347 1,362 .05 2,604 46,756
.05 .30 .8 1,483 5,873 .10 1,430 16,169
.05 .60 .2 526 2,155 .30 715 6,073
.05 .30 .2 1,834 7,420 .60 771 10,367

NOTE.—Sample sizes (total numbers of individuals) required to
achieve 80% power in genomewide studies. For admixture mapping,
the models are parameterized by the subpopulation risk-allele fre-
quencies and and the admixture proportions and ; forp p q 1 � q1 2 1 1

linkage and association, we assume a single nonadmixed population
with risk-allele frequency p. Hence, the left- and right-hand sides of
the table are not exactly comparable, but they do allow a loose com-
parison of power to detect alleles with and , respec-g p 2.0 g p 4.0
tively, under these different types of mapping strategies. The results
show the required numbers of cases plus controls; the linkage column
reports twice the required number of sib pairs. The significance levels
required for genomewide significance are lowest for linkage and high-
est for association, as described in the text. The admixture tests have
no power if .p p p1 2

proximation, the empirical distribution of both tests can
be computed by Monte Carlo simulation, and the cor-
responding empirical P values can be used for hypothesis
testing. However, as shown below, the normal ap-
proximation turns out to be extremely accurate, so
there seems to be little gain in using the empirical dis-
tribution. Finally, this parametric bootstrapping ap-
proach also provides a convenient method for assessing
genomewide significance of the largest signals in the
data, as discussed below.

The statistical tests that we have proposed here are
relatively nonparametric. The tests are designed to look
for regions of significant departure from the normal
background variation in average ancestry. This approach
differs from the more parametric approaches recently
taken by other researchers (Hoggart et al. 2004; Patter-
son et al. 2004), which implicitly or explicitly assume a
particular genetic model at the unobserved disease locus.
Parametric approaches will often be more powerful
when the assumed model is correct but may perform
badly if the genetic model is wrong. Similar issues arise
in linkage mapping; our method is somewhat analogous
to nonparametric linkage methods that simply test for
increased sharing among affected individuals (e.g., Krug-
lyak et al. 1996).

Distributions of the Test Statistics

We have performed a series of simulations to assess
the validity and power of our proposed test. Figure 7
shows an example of both the cases-only and case-con-
trol test statistics, for the same data shown in figure 6.
As expected, both test statistics lie between �2 and 2
(i.e., the central 95% of the normal distribution) across
most of the region. At the position of the disease locus,
both tests show highly significant signals.

Furthermore, we have checked that the test statistics
follow the correct distribution by simulating many data
sets under the model described above. Figure 8 shows
the distribution of both the cases-only and case-control
test statistics under the null and alternative models. Un-
der the null model, both tests show an excellent fit to
the normal distribution. Under the alternative model,
both distributions are substantially shifted away from
the null. Notice that, in this example, the cases-only test
is substantially more powerful than the case-control test.
As discussed below, this result holds in general, although
we believe that the case-control test may be more robust
to model misspecification (see the “Discussion” section).

We have also conducted simulations to assess whether
misspecifying the allele frequencies in the ancestral pop-
ulations could inflate the type 1 error rate (see the “Sim-
ulation Details” section). These simulations were designed
to model the situation in which there is fine-scale popu-
lation structure within the ancestral population (e.g.,
within West Africans for admixture mapping in African
Americans). In that case, the learning samples used to
estimate the ancestral population allele frequencies may
not be ideal representatives of the ancestral populations.
For the parameters we used, the results were indistin-
guishable from those obtained under a correct model, as
in figure 8 (results not shown). This seems to be because
most of the information about locus-specific ancestry
comes jointly from many markers, so random errors of
this type tend to cancel out. We would be much more
concerned about the effect of misspecified allele frequen-
cies in a study using a low-density marker map. Patterson
et al. (2004) suggested that, by deleting the most signif-
icant marker in a peak, one could test whether a signal
is overly reliant on one outlier locus. This seems a sensible
test of data quality, particularly in sparse maps.

Genomewide Significance

So far, we have discussed how to evaluate the signif-
icance of a signal for ancestry association at a single
point in the genome. But, for a genomewide scan, it is
most common to report the highest peaks, so one needs
a method of assessing the genomewide significance of
those peaks that takes into account the large number of
statistical tests that have been performed.

The “genomewide significance” of a test statistic
value, t, is defined as follows. Suppose that the genome-
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scan experiment were repeated, in the absence of any
genuine signal, and that the maximum absolute value of
the test statistic anywhere in the genome was . The∗t
genomewide significance of t is defined as the probability
that .∗Ft F � FtF

The traditional approach to multiple testing in linkage
analysis applies analytical theory to predict the proba-
bility that the maximum signal in a genome scan exceeds
a certain value (e.g., Lander and Kruglyak 1995). It
seems likely that such theory could be extended to the
present situation. Alternatively, the false-discovery–rate
approach to multiple testing is robust to dependence
among tests and may provide a convenient alternative
solution for admixture mapping (Sabatti et al. 2003;
Efron 2004). However, the approach that we have de-
veloped thus far makes use of a simulation approach to
multiple testing, as follows.

Using our parametric bootstrapping approach de-
scribed above, we can directly estimate the genomewide
significance of a signal. That is, each replicate simu-
lation, given , , and , simulates a genome scan withˆˆ ˆP Q r
the appropriate marker spacings and values of marker
informativeness. For each simulation, we can simply rec-
ord the maximum absolute value, , and thus obtain∗t
an empirical distribution against which each signal, t,
can be compared (see fig. 9). Hence, this procedure pro-
vides a correction for multiple testing with no additional
simulation beyond what is required for all the single-
point tests.

Simulation of a Genomewide Scan

As described in the “Simulation Details” section, we
also used Wright-Fisher simulations to generate data un-
der a more realistic model of continuous admixture over
a period of five generations (followed by five generations
of random mating before the present). We simulated
∼17,000 markers across a genome of 23 chromosomes,
with an intermarker spacing of 0.2 cM. The markers
were randomly ascertained, with between theF p 0.1ST

parental populations.
Figure 10 shows results of the tests for these data.

Both tests clearly pick out the four “true” disease loci
(but note that the assumed effect sizes are relatively large
for these). The threshold for genomewide significance is
about �4. Apart from the four true signals, there are
no regions that reach genomewide significance, although
two loci approach �4 when the cases-only test is used.
(For these plots, we used the genomewide median of

, in place of , in computing equations [5] and [6],——z ql,d d

because the four “true” loci produce a slight upward
bias in the estimated values of .)qd

However, in additional Wright-Fisher simulations that
used smaller population sizes in the admixed population,
we found that the cases-only test has a tendency to be
anticonservative (results not shown). This appears to

result from genetic drift in the admixed population. Even
rather small amounts of genetic drift create some extra
variance in the test statistic that is not accounted for by
the model. Since both cases and controls are similarly
affected by drift, the case-control test continues to be
reasonably robust. This effect may be important, in prac-
tice, unless the admixed population has been large
throughout its history.

The Power of Admixture Mapping Compared with the
Power of Linkage and Association

This section describes the theoretical performance of the
proposed tests in the situation in which there is perfect
information about ancestry. We compare the perfor-
mance of these admixture tests with the performance of
linkage and association mapping under similarly ideal-
ized conditions.

Theory

Consider a disease susceptibility locus with alleles A
and a, which confer different levels of disease risk. Let

be the frequency of the A allele in population 1, andp1

let be the frequency of A in population 2. Supposep2

that all sampled individuals in the admixed population
have a fraction of their ancestry from population 1 (q1)
and a fraction of their ancestry from population 2
( ). Furthermore, we assume that the markerq p 1 � q2 1

data are completely informative about ancestry at the
disease locus and that q1 is known; hence, our calcula-
tions will represent an upper bound on the power that
can be achieved in practice.

Under these conditions (i.e., q1 constant across all in-
dividuals and perfectly informative marker data), the
two tests that we have proposed can be rewritten more
simply as

2md— �T p (z � q ) (7)1 d 1 q q1 2

and

2m md c— — �T p (z � z ) , (8)2 d c q q (m � m )1 2 d c

where is the sample proportion of case chromosomes—zd

(and is the sample proportion of control chromo-—zc

somes) that derive from population 1 at a particular
locus and where and are the total numbers of casem md c

and control individuals, respectively. The square root
terms on the right-hand side of expressions (7) and (8)
are the inverses of the SDs of and , re-— — —z � q z � zd 1 d c

spectively, under the null hypothesis. Under the null hy-
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pothesis, both tests are asymptotically normal, with
mean 0 and variance 1.

To study the performance of the tests when the A and
a alleles confer different risks, we assume a multiplicative
model of disease risk. In this model, individuals with
genotypes AA, Aa, and aa have the disease with prob-
abilities , , and f, respectively. For simplicity, we2g f gf
assume that the control individuals are sampled ran-
domly with respect to phenotype.

Now, let represent the probability that a chromo-∗q1

some from a case individual is from population 1, at the
disease locus. Our test aims to detect that . After∗q ( q1 1

some algebra, it can be shown that

1 � p (g � 1)1∗q p q , (9)—1 1 1 � p(g � 1)

where is the overall frequency of A in—p p p q � p q1 1 2 2

the admixed population. Under the multiplicative model,
the populations of origin of the two chromosomes in an
affected individual are independent. As expected, if

, if , or if or 1, then , in∗p p p g p 1 q p 0 q p q1 2 1 1 1

which case the disease locus produces no signal. Under
the alternative hypothesis, the two tests are asymptoti-
cally normal, with means and variances as follows:

2md∗ �E(T ) p (q � q ) (10)1 1 1 q q1 2

∗ ∗q (1 � q )1 1V(T ) p (11)1 q(1 � q)

and

2m md c∗ �E(T ) p (q � q ) (12)2 1 1 q q (m � m )1 2 d c

∗ ∗q (1 � q )m � q(1 � q)m1 1 d aV(T ) p . (13)2 q(1 � q)(m � m )d c

Notice that, for , the expected value of the testm p md c

statistic T2 is smaller than that of T1 by a factor of ,�2
despite the genotyping of twice as many individuals.

We will report power in terms of the sample size re-
quired to achieve a two-sided significance level a with
probability b. To do this, we solve �E(T) � Z V(T) �b

for and (where T stands for either T1 orZ p 0 m ma/2 d c

T2) (Risch and Merikangas 1996). The required sample
size will be a function of p1, p2, q1, and g.

In table 1, we report the sample sizes required to
achieve power ( ) at a P value ofb p 80% Z p 0.840.8

( ). This P value was ar-�5a p 2.5 # 10 Z p 4.06�52.5#10

rived at by supposing that we aim to reach genomewide
significance at the .05 level in a two-sided test and by

assuming that the genome contains ∼1,000 independent
tests (i.e., that the correlation between admixture tests
decays over distances of ∼3 cM). The results reported
in table 1 do not consider the possibility that some ge-
notyping effort might also be spent on learning samples.

Table 1 also displays a comparison of the power of
admixture mapping with the power of linkage studies
using affected sib pairs and case-control studies of as-
sociation in nonadmixed populations. Our calculations
follow those of Risch and Merikangas (1996). For all
three study designs, we assume the same underlying dis-
ease model. The linkage calculations assume that the
marker data are completely informative about inheri-
tance. The association calculations assume that there is
only one variant in the region that affects susceptibility
and that this variant is genotyped. Following Risch and
Merikangas (1996), we require significance at P p

for linkage and at for association.�4 �810 P p 5 # 10
The linkage results presented here correct a computa-
tional error in the original study by Risch and Meri-
kangas (1996) (see Risch and Merikangas 1997). The
required number of cases plus random controls for a
case-control study to achieve suitable power in a pan-
mictic population is approximately 2 ∗(Z � Z ) (p �a b

, where p is the frequency of∗ ∗ �2p)(2 � p � p)(p � p) /4
the risk allele, is the frequency of∗ �1p p pg(pg � 1 � p)
the risk allele in cases, and .Z p 5.45a

Predicted Power and Comparison with Linkage and
Association

Table 1 describes the power of four types of study
design under idealized conditions: (1) cases-only admix-
ture mapping, (2) case-control admixture mapping, and
two standard approaches for nonadmixed popula-
tions—namely, (3) linkage mapping using sib pairs and
(4) case-control association. One result of these analyses
is that the case-control test is always less powerful than
the cases-only test, requiring ∼4-fold more individuals
to achieve comparable power. This is because the cases-
only test compares the local ancestry proportion (which
is moderately variable) with the genome average ances-
try (which is known quite accurately), whereas the case-
control test compares two local ancestry proportions,
both of which are variable.

However, the case-control test is more robust when
there is genetic drift or selection or when the population
allele frequencies are not well estimated. Therefore, it
seems that a sensible compromise that minimizes ge-
notyping costs is to screen the genome by use of cases
only and then to check regions with promising signals
by use of control individuals as well.

The power comparisons across study designs are less
straightforward, because the different study types differ
both in their underlying assumptions and in the cost and
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feasibility of genotyping and sample collection. First,
admixture mapping is only powerful when there are sub-
stantial differences in disease-allele frequencies between
the ancestral populations; for many diseases, the exis-
tence of such genes seems quite plausible but is unproven
at this time. Association mapping will perform well
when there is a single variant affecting susceptibility but
may perform poorly for genes with multiple variants.
Furthermore, most current plans for association map-
ping aim to genotype a subset of the markers and to
detect causative variants by LD, which will further re-
duce power from the theoretical maximum.

Second, the amount of genotyping required for these
studies ranges from ∼103 markers for a genomewide
linkage scan to ∼104 markers for admixture mapping to
∼106 markers for a moderately complete genomewide
association scan. With currently available genotyping
technologies, admixture mapping is already within reach
for medium-sized studies, whereas genomewide associ-
ation is still too expensive to be routine.

These caveats aside, it is still interesting to compare
across the study types. As pointed out by Risch and
Merikangas (1996) and as illustrated in table 1, under
ideal conditions association mapping is far more pow-
erful than linkage. When the population disease-allele
frequencies are very different, admixture mapping shares
the same advantageous statistical properties as associ-
ation mapping and can be substantially better than
linkage.

In general, one might expect admixture mapping to
have lower power in a single-point test than association
mapping, because normally ancestry only provides in-
complete information about whether the underlying dis-
ease mutation is present; in contrast, we assume for these
calculations that, in association mapping, the actual dis-
ease marker is typed. Indeed, our test 2 (cases vs. con-
trols) does always have lower power than association
mapping, but, for certain parameter combinations, our
test 1 (cases only) can actually perform better than as-
sociation in a genomewide scan. Test 1 enjoys the ad-
vantage of comparing the case ancestry at each locus
with the average case ancestry, which can be estimated
very accurately, whereas test 2 and association mapping
both look for a difference between two estimated fre-
quencies (in cases and controls, respectively). Further-
more, the penalty for multiple testing is substantially
smaller in admixture mapping than in association
mapping.

In summary, for disease alleles with frequencies that
differ greatly across populations, admixture mapping is
much more powerful than linkage mapping and can have
power that is comparable to association mapping. How-
ever, admixture mapping will have little or no power to
find disease alleles with frequencies that are relatively
uniform across populations. The genotyping effort re-

quired for admixture mapping is slightly more than that
required for linkage mapping and far less than that re-
quired for association mapping.

Discussion

In this study, we have described two tests for detecting
“ancestry association” in admixed populations. The
cases-only test and, to a lesser extent, the case-control
test can potentially deliver much of the power of ge-
nomewide association mapping at a small fraction of the
cost. These tests are potentially far more powerful than
the widely used affected sib pairs study design for linkage
analysis.

Of course, the caveat with admixture mapping is that
this method will only work well if the underlying risk
variants are at substantially different frequencies in the
original populations. At the time of writing, there are
not enough data on complex-trait variants to know how
often this will be true. However, population variation
in risk-allele frequencies seems a sensible working hy-
pothesis for many diseases with prevalences that vary
substantially across ethnic groups. Additional prelimi-
nary evidence might be obtained by testing whether phe-
notype status is correlated with ancestry within the ad-
mixed group, as seems to be the case for prostate cancer
(Kittles et al. 2002). In any case, there is now great
interest within the human genetics community in ad-
mixture mapping, and there will soon be hard data to
start addressing this question.

As we have shown here, the cases-only study design
is far more powerful than the case-control design. This
raises the question of whether there is any point in col-
lecting and genotyping controls. Although the models
suggest that there is no benefit in having the controls,
in practice we believe that the controls provide an im-
portant check that the test is performing correctly in
the regions where there are signals. In particular, show-
ing a difference between cases and controls can help
rule out the possibilities that misspecified allele fre-
quencies have produced a signal or that a shift in an-
cestry is due to some other factor, such as natural se-
lection or genetic drift. Our simulations suggest that the
cases-only test may be surprisingly sensitive to genetic
drift, unless the admixed population is reasonably large.
Controls can also help improve the allele-frequency es-
timates in the cases-only test. An economical genotyping
strategy may be to type the controls only in regions
where the cases show signals, plus enough additional
markers to estimate the ancestries of the controls
accurately.

An important issue for admixture mapping is to de-
cide how many markers to genotype and which markers
to choose. Smith et al. (2004) have developed a SNP
map of some 3,000 unusually informative markers for
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use with African American samples. Certainly, this will
be an important resource for admixture mapping in that
population, but we wish to point out that admixture
mapping is already feasible in other admixed popula-
tions where such resources are not yet available. In ad-
mixed populations for which between the an-F � 0.1ST

cestral populations, as few as 10,000–15,000 random
SNPs will capture most of the information about locus-
specific ancestry. The cost of genotyping this many
markers is becoming increasingly reasonable.

We have not considered microsatellites in this study,
because high-throughput SNP genotyping seems to be
becoming more widespread than microsatellite geno-
typing. However, microsatellites tend to be much more
informative than SNPs for ancestry estimation (Rosen-
berg et al. 2003) and therefore may represent a sensible
study approach in some situations—especially for stud-
ies of admixture and hybridization in nonmodel organ-
isms (e.g., Rieseberg et al. 1999) for which high-density
SNP maps may not be available.

Although we have focused here on discrete binary
traits, our general framework can also handle quan-
titative traits in a natural way. Suppose that xi is the
trait value of individual i and that is the mean of xi

—x
across m sampled individuals. Then one test statistic is

m —1 — (i) (i)ˆ� (x � x)[z (k) � q (k)]i lm
ip1T (l, k) p . (14)mq —1 — (i) ˆˆ ˆSD � (x � x)z (k) d P, Q, r[ ]i lm

ip1

This test is also asymptotically normal, and, again, both
positive and negative tails of the distribution are of po-
tential interest.

As with linkage analysis, positional cloning of ad-
mixture mapping peaks would normally be followed by
dense marker association mapping across the region.
Admixture mapping peaks will normally be much nar-
rower than linkage peaks, suggesting that fine mapping
should be easier. One plausible concern about fine map-
ping in admixed populations is that, as discussed above,
admixture LD can extend over very large distances in
such populations. Does this mean that it might be dif-
ficult to localize the mutations? In fact, at least for Af-
rican Americans, the strength of short-range LD is quite
similar to that in Africans (Gabriel et al. 2002). Thus,
there would seem to be no problem with proceeding to
fine mapping, at least in African Americans. The ap-
parent discrepancy between LD at short and long scales
is presumably because background LD is very strong at
short distances but decays very rapidly, whereas ad-
mixture LD is relatively weak at all distances but decays

slowly. In African Americans, admixture LD contributes
little to the total LD at short distances but produces
measurable LD at cM distances, where there is no back-
ground LD. Nonetheless, association tests in admixed
populations are potentially subject to false positives due
to the variation in ancestry. Therefore, it is important
to use methods that can control for this effect (e.g.,
Pritchard et al. 2000b; Hoggart et al. 2003).

We turn now to a technical issue related to our ap-
proach. Hoggart et al. (2003) criticized an earlier study
by Pritchard et al. (2000b) for using a two-stage test
analogous to the one used here, in which ancestry es-
timates from the program structure were “plugged in”
to a test of association. Their first criticism was that
this procedure does not account for uncertainty in the
ancestry estimates. Second, they worried that, in the
absence of learning samples, there is nonidentifiability
of the population labels. The nonidentifiability means
that, in theory at least, the labels might switch during
a run of the Markov chain, in which case mean ancestry
estimates would not be meaningful. Although these con-
cerns are theoretically plausible, extensive simulations
of the admixture mapping tests presented here, as well
as simulations of the STRAT test (Pritchard et al.
2000b), show that, in practice, the statistical tests are
indeed correctly calibrated under the null hypothesis.
Moreover, we have a great deal of experience with the
program structure and we have found that label switch-
ing is not a concern, in practice, for informative data
sets. Besides, there are some practical advantages to the
two-stage process. First, the two-stage process makes
the output much more transparent and interpretable for
the end user. Second, it makes it much easier for users
to take the ancestry estimates and develop other tests
of association that are appropriate for their own data
(e.g., Thornsberry et al. 2001).

In summary, we have presented powerful multipoint
methods for detecting ancestry association in admixed
populations. Now that dense genomewide SNP panels
are available in humans and SNP genotyping costs are
becoming increasingly reasonable, we believe that ad-
mixture mapping is poised to make an important con-
tribution to the dissection of complex traits.
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Appendix A

HMM

To compute the admixture mapping test statistic, estimates of parameters P, Q, and r are obtained from structure
under the linkage model. The estimation of the hidden states of the Markov chain for Z is then performed
independently for each individual by use of the Baum-Welch algorithm on the basis of the probabilities defined
below. These computations are similar to those described by Falush et al. (2003a), except that the goal here is to
compute the marginal posterior assignment probabilities at each locus rather than to sample a single realization
from the joint posterior distribution.

For each chromosome from each individual, we define the forward probabilities as b p Pr (x , … , x , z plk 1 l l

and the backward probabilities as , which are defined for all stateskFP, r, Q) a p Pr (x , … , x Fz p k, P, r, Q)lk l�1 L l

k and for all loci from 1 to L. It follows that , and the likelihood can beb a p Pr (x , … , x , z p kFP, r, Q)lk lk 1 L l

computed as

K

b a p Pr (x , … , x FP, r, Q) p L� lk lk 1 L l
kp1

for each given l. The algorithm used here differs slightly from the one implemented under the linkage model in
structure, as the interest here is in computing the conditional probabilities,

Pr (x , … , x ,z p kFP, r, Q) b a1 L l lk lkPr (z p kFX, P, r, Q) p p ,l Pr (x , … , x FP, r, Q) L1 L l

for all loci l and all populations k. We start by providing the algorithm details for the case of complete phase
information. Recalling that the equation

′P p Pr (z p kFz p k, r, Q)′kk l�1 l

defines the transition probabilities of the Markov chain (eq. [4]) and that pklj is the frequency of allele j at locus l
in population k, we find that

b p q p x1k k k1 1

for , and is obtained recursively from ask p 1, … , K b b(l�1)k lk

K

b p b P p .′ ′ ′�( )(l�1)k lk k k k (l�1)xl�1
kp1

The computation of for and allows us to obtain the forward probabilities. Startingb l p 1, … , L k p 1, … , Klk

with , the backward probabilities are then computed asa p 1Lk

K

a p p a P′ ′�lk k(l�1)x (l�1)k k kl�1
kp1

for and .l p L � 1, … , 1 k p 1, … , K
When phase information is missing or only partially known, the forward probabilities need to be expressed as

1 2 1 2 1 1 2 2b p Pr (x , x … , x , x , z p k , z p k FP, r, Q) ,1 2lk k 1 1 l l l l
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where the superscript refers to the first allele copy and the superscript refers to the second allele copy at each1 2( ) ( )
locus. Analogously, the backward probability at each locus becomes

1 2 1 2 1 1 2 2a p Pr (x , x , … , x , x Fz p k , z p k , P, r, Q) ,1 2lk k l�1 l�1 L L l l

and the resulting joint conditional probability of the ancestral states in the two allele copies is

b a1 2 1 2lk k lk k1 1 2 2Pr (z p k , z p k FX, P, r, Q) p .l l Ll

The algorithm is implemented both for fully phased data and for unphased data. Let represent the probabilitybl

that the first alleles of adjacent loci l and are on the same chromosome. For unphased data, the order of thel � 1
allele copies is random, and so is set to 0.5. Under this scenario, we obtain the forward probability at the firstbl

locus as

b p q q p p1 2 1 2 1 1 2 21k k k k k 1x k 1x1 1

for and , and the full forward recursion is then computed as1 2k p 1, … , K k p 1, … , K

K K

b p b p p′1 ′2 1 2 ′1 1 ′2 2� �(l�1)k k lk k k (l�1)x k (l�1)x(l�1) (l�1)1 2k p1 k p1

′ ′ ′ ′b P P � (1 � b )P P .1 1 2 2 1 2 2 1{ }l k k k k l k k k k

As for the backward probabilities, we obtain and′ ′a p 11 2lk k

K K

′ ′a p a p p1 2 1 2 1 1 2 2� �lk k (l�1)k k k (l�1)x k (l�1)x(l�1) (l�1)1 2k p1 k p1

′ ′ ′ ′b P P � (1 � b )P P .1 1 2 2 1 2 2 1{ }l k k k k l k k k k

The actual implementation of this algorithm is slightly more complicated, since we rescale the probabilities peri-
odically during the forward and backward steps, to avoid numerical underflow.

Electronic-Database Information

The URL for data presented herein is as follows:
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